Synthetic control of a fitness tradeoff in yeast nitrogen metabolism
نویسندگان
چکیده
BACKGROUND Microbial communities are involved in many processes relevant to industrial and medical biotechnology, such as the formation of biofilms, lignocellulosic degradation, and hydrogen production. The manipulation of synthetic and natural microbial communities and their underlying ecological parameters, such as fitness, evolvability, and variation, is an increasingly important area of research for synthetic biology. RESULTS Here, we explored how synthetic control of an endogenous circuit can be used to regulate a tradeoff between fitness in resource abundant and resource limited environments in a population of Saccharomyces cerevisiae. We found that noise in the expression of a key enzyme in ammonia assimilation, Gdh1p, mediated a tradeoff between growth in low nitrogen environments and stress resistance in high ammonia environments. We implemented synthetic control of an endogenous Gdh1p regulatory network to construct an engineered strain in which the fitness of the population was tunable in response to an exogenously-added small molecule across a range of ammonia environments. CONCLUSION The ability to tune fitness and biological tradeoffs will be important components of future efforts to engineer microbial communities.
منابع مشابه
Effect of Processed Lemon Pulp With Saccharomyces Cerevisiae Yeast on Protein and Energy Metabolism in Raini Goats
The aim of present study is investigating effect of treated lemon pulp by Saccharomyces cerevisiae yeast on protein and energy metabolism in goats was fed with this product. In this experiment 8 goats from raini breed were used for 21 days period; 16 days for adaptation and 5 days for sampling, to investigate the effect of processing lemon pulp by Saccharomyces cerevisiae yeas...
متن کاملEffect of Processed Lemon Pulp With Saccharomyces Cerevisiae Yeast on Protein and Energy Metabolism in Raini Goats
The aim of present study is investigating effect of treated lemon pulp by Saccharomyces cerevisiae yeast on protein and energy metabolism in goats was fed with this product. In this experiment 8 goats from raini breed were used for 21 days period; 16 days for adaptation and 5 days for sampling, to investigate the effect of processing lemon pulp by Saccharomyces cerevisiae yeas...
متن کاملFunctional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions.
DNA microarray analysis was used to profile gene expression in a commercial isolate of Saccharomyces cerevisiae grown in a synthetic grape juice medium under conditions mimicking a natural environment for yeast: High-sugar and variable nitrogen conditions. The high nitrogen condition displayed elevated levels of expression of genes involved in biosynthesis of macromolecular precursors across th...
متن کاملEffect of low-temperature fermentation on yeast nitrogen metabolism
The aim of this study was to analyse the influence of low-temperature wine fermentation on nitrogen consumption and nitrogen regulation. Synthetic grape must was fermented at 25 and 13 C. Lowtemperature decreased both the fermentation and the growth rates. Yeast cells growing at low-temperature consumed less nitrogen than at 25 C. Specifically, cells at 13 C consumed less ammonium and glutamine...
متن کاملTEAK: Topology Enrichment Analysis frameworK for detecting activated biological subpathways
To mine gene expression data sets effectively, analysis frameworks need to incorporate methods that identify intergenic relationships within enriched biologically relevant subpathways. For this purpose, we developed the Topology Enrichment Analysis frameworK (TEAK). TEAK employs a novel in-house algorithm and a tailor-made Clique Percolation Method to extract linear and nonlinear KEGG subpathwa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Biological Engineering
دوره 3 شماره
صفحات -
تاریخ انتشار 2009